This is default featured slide 1 title

This is default featured slide 1 title

You can completely customize the featured slides from the theme theme options page. You can also easily hide the slider from certain part of your site like: categories, tags, archives etc. More »

This is default featured slide 2 title

This is default featured slide 2 title

You can completely customize the featured slides from the theme theme options page. You can also easily hide the slider from certain part of your site like: categories, tags, archives etc. More »

This is default featured slide 3 title

This is default featured slide 3 title

You can completely customize the featured slides from the theme theme options page. You can also easily hide the slider from certain part of your site like: categories, tags, archives etc. More »

This is default featured slide 4 title

This is default featured slide 4 title

You can completely customize the featured slides from the theme theme options page. You can also easily hide the slider from certain part of your site like: categories, tags, archives etc. More »

This is default featured slide 5 title

This is default featured slide 5 title

You can completely customize the featured slides from the theme theme options page. You can also easily hide the slider from certain part of your site like: categories, tags, archives etc. More »

 

The Optics of Nonimaging Concentrators: Light and Solar Energy

31x2Bgdfi2AEL._SL160_.jpg

Nonimaging optics is the branch of optics concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an image of the source; instead an optimized optical system for optical radiative transfer from a source to a target is desired. Early academic research in nonimaging optical mathematics seeking closed form solutions was first published in textbook form by W.T. Welford and Roland Winston in this groundbreaking book “The Optics of Nonimaging Concentrators: Light and Solar Energy” (1978).

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis

41khhxQs2wL._SL160_.jpg

State-of-the-art renewable energy science research and applications

Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis provides expert techniques for extracting hydrogen from water using transition metal oxides as catalysts. The basic processes of electrochemistry and photocatalysis for hydrogen production are described along with photocatalytic reactions and semiconductor photocatalysts, particularly metal oxides.

This in-depth guide illustrates the corresponding crystal structure vs. electronic structure and optical properties vs. light absorption of transition metal oxides. Impurity and doped photocatalysts, integrated organic and inorganic systems, surface and interface chemistry, and nanostructure and morphology in photocatalysis applications are all addressed. This comprehensive resource introduces soft x-ray absorption (XAS), soft x-ray emission spectroscopy (XES), and resonant inelastic soft x-ray scattering (RIXS), followed by a description of instrumentation.

COVERAGE INCLUDES:
* Hydrogen generation: electrochemistry and photoelectrolysis * Photocatalytic reactions, oxidation, and reduction * Transition metal oxides * Crystal structure and electronic structure * Optical properties and light absorption * Impurity, dopants, and defects * Surface and morphology * Soft x-ray spectroscopy and electronic structure

Advanced Photovoltaic System Design (The Art and Science of Photovoltaics)

21uVZmJgcfL._SL160_.jpg

Part of the Art and Science of Photovoltaics series High-performing photovoltaic systems require a design that produces more electricity in kilowatt hours for less cost. The growing demand for such high-performing PV systems calls for trained, skilled PV professionals. Advanced Photovoltaic System Design goes beyond the basics and provides students with the information and knowledge to understand, design, and recognize high-performance PV systems. Every step of the design process adds up incrementally to sizeable and measureable energy production increases, longer system and component lifespans, and less maintenance costs. Advanced Photovoltaic System Design emphasizes the importance of each step of the design process and proper decision-making. About the Series: The Photovoltaics (PV) industry stands on the brink of a revolution. The appeal of a new and growing industry has brought an influx of new PV professionals to the market, but the availability of educational resources has not kept pace with market demands. This gap has led to serious quality and performance issues that the industry will need to face in the decades ahead. The Art and Science of Photovoltaics series was developed to fill this education gap. Each book in the series goes beyond simple systematic processes by tackling performance challenges using a systems perspective. Readers do not learn PV design and installation steps in a vacuum; instead they gain the knowledge and expertise to understand interrelationships and discover new ways to improve their own systems and positively contribute to the industry.